Apr 2: Cubic equations continued

Outline

- History
- Recall cubic solution
- Example
- Structure of roots \& symmetric functions
§1. History of cabics
Charaters
- Luca Pacioli

1494 "Suman de cititentiea,
Cubic cannot be sotred!

- Scipine del Ferro

Solve the cabic in 1515

- Kept the solidil proucte
- shore with his stendect Fir prior to his cleath i- iszas
- Antonio Fior
- goal bat not grat
- coundn't keyl the secret
- Niccolo Tarteglia
- indepercinaly foul the soln
- Ginlono Cardero (Cardan) -inite fior to wisit $-1^{\text {st }}$ lation treatia on algebia. 1545 (Ar Magna)

Consideral two eaks

$$
x^{3}+a x+b=0 \quad x^{3}=a x+b
$$

T Didn't use negative nurbs!
ded Ferro

Baby case
Solve $x^{3}=a$ a real unuber

$$
\sqrt[3]{a} \text { is a solution }
$$

unique real number whos cuber is a

§2. Cubic son

- First reductions led us to

$$
x^{3}+a_{1} x+a_{0}=0
$$

- New trick: $x=y-\frac{a_{1}}{3 y}$
non-lineas substititia
Idea: First solve for y \& then
solve for x.
- Substituting in x leads to

$$
y^{b}+a_{0} y^{3}-\frac{a_{1}^{3}}{27}=0
$$

Solve for y^{3}

$$
\frac{y^{3}=\frac{-a_{0}}{2} \pm \sqrt{\frac{a_{0}^{2}}{4}+\frac{a_{1}^{3}}{27}}}{y=\sqrt[b^{3}]{\frac{-a_{0}}{2} \pm \sqrt{\frac{a_{2}^{2}}{4}}+\frac{a_{1}^{3}}{27}}}
$$

Rank: Gives 6 solus But actually only 3 !
Rna: If we substitute $x=y-\frac{a_{1}}{3 y}$, get "Cardoons's equate"

$$
x=\sqrt[3]{-\frac{a_{0}}{2}+\sqrt{\frac{a_{0}^{2}+\frac{a_{1}^{3}}{4}}{27}}}+\sqrt[3]{-\frac{a_{0}}{2}-\sqrt{\frac{a_{2}^{2}}{4}+\frac{a_{3}^{3}}{27}}}
$$

Δ Don't apply naively!
Each caber not has 3 choins $q=3.3$ possible expressions
Rule: Cheek solutes!
\$3 Examples
$E_{x} 1 \quad x^{3}+a_{0}=0 \quad\left(a_{1}=0\right)$
know sons are

$$
x=\sqrt[3]{-a_{0}}, \omega \sqrt[3]{-a_{0}}, \omega^{2} \sqrt[3]{-a_{0}}
$$

Take $x=y-\frac{a_{y}}{3 y}=y$

$$
\begin{aligned}
y^{3} & =\frac{-a_{0}}{2} \pm \sqrt{\frac{a_{0}^{2}}{4}+\frac{a_{1}^{3}}{27}} \\
& =\frac{-a_{0}}{2} \pm \sqrt{\frac{a_{0}^{2}}{4}} \\
y^{3} & =-a_{0} \text { or } 0
\end{aligned}
$$

But $y=0$ is a not a sol!

$$
\neg x=y=\sqrt[3]{-a_{0}}, \omega \sqrt[3]{-a_{0}}, \omega^{2} \sqrt[3]{-a_{0}}
$$

$E x 2 \quad x^{3}-3 x=0 \quad a_{1}=-3$
Again, know sons!

$$
x=y+\frac{1}{y}
$$

$$
\begin{aligned}
& x=y+\bar{y} \\
& y^{3}= \pm \sqrt{-i}= \pm_{i} \lambda_{-i}^{i}
\end{aligned}
$$

3 cases for y if $y^{3}=i=e^{\pi i / 2}$
(I)

$$
\begin{aligned}
& y=e^{\pi i / 6}=\frac{\sqrt{3}}{2}+\frac{1}{2} i \\
& \sim x=e^{\pi i / 6}+e^{-\pi i / 6} \\
& =\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)+\left(\frac{\sqrt{3}}{2}-\pi i\right)=\sqrt{3}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& y=\omega e^{\pi i / 6} \\
& x=-\sqrt{3}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& y=\omega^{2} e^{\pi i l b} \\
& x=0
\end{aligned}
$$

3 cases for y it $y^{3}=-i=e^{3 \pi i / 2}$
(1) 0
(2) $-\sqrt{3}$
(3) $\sqrt{3}$
list 3 sohs'
Beware: "Cardaro's trmank" gives
$\sqrt[3]{i}+\sqrt[3]{1}$ not a siln

