Apr Z: Cubic equations continued

Outline

- History - Recall cubic solution
 - Examples
 - Structure of roots & symmetric functions

Consideral two ears \$1. History of cubics $x^3 + ax + b = 0$ $x^3 = ax + b$ Characters Didn't use negative number! · Luca Pacisli 1999 "Suma de astériéra,... del Derro Cubic cannot be solved! · Scipine del Ferro Baby case . Solved the cubic in 1515 Solve X = a ce real number - Kept the soluble projecte - share with his standart For prior to his clearly in 1526 Ta' is a solution Antonio Fior - good but not great - couldn't key the secret unique real number whose cube is of Let $w = e^{2\pi i/3} = \frac{1}{2} + \frac{1}{2}i$ prinke 3rd not of unity · Niccolo Tartaglia - independencely Bud the sol x³-a has 3 Solation · Ginlow Cardeno (Cardan) -invite For to usit -1st latin toe-the on edgebra 1545 (Ari Maynon) Ta, wata, wata

\$2. Cubic sol Rock: Crives 6 solus. But actually only 3! First reductions led us to $\chi^3 + q_1 \times t q_6 = 0$ Rock: If we substitute X=Y-Q1 34, · New trick: X = Y - 3Y get "Cardons's egrader" non-linear substitution $\chi = \frac{-\alpha_0}{2} + \frac{\alpha_0^2 + \alpha_3^3}{27} + \frac{-\alpha_0}{2} - \frac{\alpha_0^2 + \alpha_3^3}{27}$ Idea: First solve for y & then solve for X. (2) Don't apply naively! · Substituting in X leads to $y^{b} + a_{b}y^{3} - \frac{a_{1}}{27} = 0$ Each cabe not has 3 choires 9=3.3 possible expressions Solve for y3 Rock: Check solutions! $y^{3} = -\frac{a_{0}}{2} \pm \left(\frac{a_{0}^{2}}{2} \pm \frac{a_{1}^{3}}{2} \pm \frac{a$ $\gamma = \psi^2 \left[-\frac{\alpha_0}{2} \pm \left[\frac{\alpha_0^2}{2} \pm \frac{\alpha_1^3}{2} \pm \frac{\alpha_1^3}{2} \right] \right]$ i=0,1,2

\$3 Examples $E_{x} 1 \quad \chi^{3} + a_{0} = 0 \quad (a_{1} = 0)$ $W = e^{z\pi i/3}$ Know soms are $\chi = \frac{3}{-q_0}, \omega^2 - \frac{3}{-q_0}, \omega^2 - \frac{3}{-q_0}$ Take $x = y - \frac{\alpha_1}{3y} = y$ $\gamma^{3} = -\frac{q_{0}}{2} \pm \left(\frac{q_{0}^{2}}{4} + \frac{q_{1}^{3}}{27} \right)$ $= -\frac{q_0}{2} \pm \sqrt{\frac{q_0^2}{4}}$ $\sqrt{y^3} = -q \int dr$ But y=0 is a not a soh! $\neg x = y = \frac{3}{4} - \alpha_0, \quad \omega = \frac{3}{4} - \alpha_0, \quad \omega$

3 cases for y if y3=-i=estik $E \times Z \quad \chi^3 - 3\chi = 0 \quad q_1 = -3$ Again, Know sohs! 90=0 (1) $X = Y + \overline{Y}$ $\gamma^3 = \pm \sqrt{-1} = \pm i / -i$ (2)13 Cist 3 sohs 3 cases for γ if $\gamma^3 = \dot{c} = e^{\pi i l_2}$ (1) $y = e^{\pi i l 6} = \frac{13}{2} + \frac{1}{2}i$ Cardan's Smala $A = e^{\pi i l_b} + e^{\pi i l_b}$ 13_ gives $=\left(\frac{1}{2}+\frac{1}{2}i\right)+\left(\frac{1}{2}-\frac{1}{2}i\right)=13$ not a suln \vec{t} Lz) $\gamma = w e^{\pi i/L}$ 3 (3) y= we milb $\chi = D$